在这里需要说明的是,Pan是声像,Phase是相位,如果有人告诉你声像=相位,这是错误的,它们两种是不同的。
声像是指乐器在声场中的发声位置点。简单的说,就是声音的方位,是靠左还是靠右。要理解“声像”这个概念,你首先要知道,人耳究竟是如何辨别声音方位的?举个例子,两个音箱,摆位和你的脑袋成等边三角形,边长都是350厘米,在两个音箱里同时播放强度相等,时间也相等的音频信号,这时你会感到声音是从正前方传来的。
然后,继续保持两个音箱的发音时间没有时间差,将右边音箱的音量逐渐加大,你就会感到声像位置逐渐向这个音箱偏移。当两个音箱的声级差超过了15分贝的时候,你就会感到声像几乎完全被固定在右边的音箱上。这说明了,人是靠两耳得到的声音的声级差来辨别声音的方位的。
接下来再重新做一次试验。还是那两个音箱,这次不是增加右边的音量,而是将右边的信号延时播放,并逐渐加大延时量,随着两个音箱所发出的声音之间的时差逐渐加大,你会感到,声像逐渐向左边的音箱偏离。当两个音箱之间的时超过3毫秒后,你就会感到声像是在左边的音箱上了。但事实上,两个音箱的音量是一样的。
也就是说,在3毫秒到30毫秒的范围内,人耳会将声源的位置确定在首先到达耳朵的那个声源上。这就是声学上著名的“哈斯效应”。如果延迟达到50毫秒以上,你仍然感觉到声源是从未经延时的音箱上来的,但能感到这个声音之后有一个回声。
这两个实验证明了,在一般的普通音量下(50-70分贝内),某一个声源发出的声音,传到人的耳朵里时。如果声音来自听音者的正前方,那么声源到左、右耳的距离是相等的,声波到达左、右耳的时间差、音色差则为零。如果声源不在正前方,那么声音到达左、右耳的时间及强弱则会有一定的差别,这种差别被人耳接收后,就能“分析”出声源在什么方向和位置。
这就是所谓的“双耳效应”。
我们听觉的立体感是基于“双耳效应”产生的。现在的“立体声唱片”“立体声耳机”等等,都是利用了“双耳效应”。我们通过录音技术录下声响,然后用两个或几个音箱播放出来,使人们听起来好像音箱之间有一个声源在发声。这个假想的、实际上不存在的声源就叫作“声像”。
展开全文
每件乐器都有着自己的声像点,如果我们在做音乐的时候,声像都在中间,那就好比交响乐团像“千手观音”那样一溜站在舞台中间给你演奏。所以,声像要按人的听觉习惯来各自摆开,这会使音乐听上去更具有层次感,而且可以压低噪声。
下面的这张图是交响乐队各乐器在舞台上的摆位:
二、什么是相位(PHASE)
相位是物理中的概念。我们都知道,任何复杂的波形,都能够分解为很多个正弦波,也就是说,自然界中任何声音,都是无数正弦波的合成。如果不理解这一点,记住结论就好了。
正弦波是周期性的,从起点开始计时,每隔一段时间波形都会回到起点,我们把这个时间间隔叫做周期。对于一个正弦波,通常只研究一个周期就等于了解整个波形了。既然是周期性的,我们想象把一个周期的时间坐标弯成一个圆,这样每个时间点都对应一个角度,相当于钟表分针的角度,以此来表示相位,会更加方便数学方面的研究。
任何一个波的起始点离其相邻波的起始点都是360度,也就是说所有波峰或者波谷都是同相位的,波峰、波谷之间则是互相反向,相位差正好是180°。同相位相加,反相位相减。
举个例子,我们来看下面这两个函数的波形:这两个波形是不一样的,但频谱却相同,因为在s和2s的位置各有两个相同大小的峰,而功率频谱不记录谐波的相位。所以,这两个波形的声音听上去会完全一样。也就是说,人耳对波形的相位是没有感觉的,换句话讲,一个声源早一点或晚一点到达某一只耳朵,并不影响声源的听感,但是如果到达每个耳朵的时间不同,就会有相位差,从而产生立体感。
我们来做几个反相实验。(反相,就是把正弦波波形上下颠倒一下,正变负,负变正。对于正弦波,这也就相当于提前或者错后半个周期。)
实验一
这是一个单声道音频。对其进行反相处理。
反相前:1Mono.mp3
反相后:2Mono.mp3
听觉上没有任何变化,我们已经改变了相位,但是听上去没有区别,说明相位本身是没有意义的。但是当多个音箱,不同信号源,摆放在同一个房间的时候,声音的相位就显得相当重要。
返回搜狐,查看更多